Radio Emission from Outflow-Cloud Interaction and Its Constraint on TDE Outflow


الملخص بالإنكليزية

Tidal disruption event (TDE) can launch an ultrafast outflow. If the black hole is surrounded by large amounts of clouds, outflow-cloud interaction will generate bow shocks, accelerate electrons and produce radio emission. Here we investigate the interaction between a non-relativistic outflow and clouds in active galaxies, which is manifested as outflow-BLR (broad line region) interaction, and can be extended to outflow-torus interaction. This process can generate considerable radio emission, which may account for the radio flares appearing a few months later after TDE outbursts. Radio observations can be used to directly constrain the physics of outflow, instead of indirectly providing a lower limit of the outflow energy by estimating the electron and magnetic field energy as in the outflow-CNM (circumnuclear medium) model. Benefitting from efficient energy conversion from outflow to shocks and the strong magnetic field, outflow-cloud interaction may play a non-negligible, or even dominating role in generating radio flares in a cloudy circumnuclear environment if the CNM density is no more than 100 times the Sgr A*-like one.

تحميل البحث