We report on a quantum form of electronic flicker noise in nanoscale conductors that contains valuable information on quantum transport. This noise is experimentally identified in atomic and molecular junctions, and theoretically analyzed by considering quantum interference due to fluctuating scatterers. Using conductance, shot noise, and flicker noise measurements, we show that the revealed quantum flicker noise uniquely depends on the distribution of transmission channels, a key characteristic of quantum conductors. This dependence opens the door for the application of flicker noise as a diagnostic probe for fundamental properties of quantum conductors and many-body quantum effects, a role that up to now has been performed by the experimentally less-accessible shot noise.