Local contact inhibition leads to universal principles of cell population growth


الملخص بالإنكليزية

Cancer cell population dynamics often exhibit remarkably replicable, universal laws despite their underlying heterogeneity. Mechanistic explanations of universal cell population growth remain partly unresolved to this day, whereby population feedback between the microscopic and mesoscopic configurations can lead to macroscopic growth laws. We here present a unification under density-dependent birth events via contact inhibition. We consider five classical tumor growth laws: exponential, generalized logistic, Gompertz, radial growth, and fractal growth, which can be seen as manifestations of a single microscopic model. Our theory is substantiated by agent based simulations and can explain growth curve differences in experimental data from in vitro cancer cell population growth. Thus, our framework offers a possible explanation for the large number of mean-field laws that can adequately capture seemingly unrelated cancer or microbial growth dynamics.

تحميل البحث