Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, firstly, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across multiple edge access points, leading to incompletion of inconsistent FL training. Secondly, we provide the convergence analysis of HFL with user mobility. Our analysis proves that the learning performance of HFL deteriorates drastically with highly-mobile users. And this decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among local data of users. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule and model aggregation scheme. Finally, we provide experiments to evaluate the learning performance of HFL and our MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases, namely, the case of users with non-independent and identical distribution data, the case of users with high mobility, and the cases with a small number of users.