Confinement in bilayer graphene via intra- and inter-layer interactions


الملخص بالإنكليزية

We consider confinement of Dirac fermions in $AB$-stacked bilayer graphene by inhomogeneous on-site interactions, (pseudo-)magnetic field or inter-layer interaction. Working within the framework of four-band approximation, we focus on the systems where the stationary equation is reducible into two stationary equations with $2times2$ Dirac-type Hamiltonians and auxiliary interactions. We show that it is possible to find localized states by solving an effective Schrodinger equation with energy-dependent potential. We consider several scenarios where bilayer graphene is subject to inhomogneous (pseudo-)magnetic field, on-site interactions or inter-layer coupling. In explicit examples, we provide analytical solutions for the states localized by local fluctuations or periodicity defects of the interactions.

تحميل البحث