Long time asymptotics for the defocusing mKdV equation with finite density initial data in different solitonic regions


الملخص بالإنكليزية

We investigate the long time asymptotics for the Cauchy problem of the defocusing modified Kortweg-de Vries (mKdV) equation with finite density initial data in different solitonic regions begin{align*} &q_t(x,t)-6q^2(x,t)q_{x}(x,t)+q_{xxx}(x,t)=0, quad (x,t)inmathbb{R}times mathbb{R}^{+}, &q(x,0)=q_{0}(x), quad lim_{xrightarrowpminfty}q_{0}(x)=pm 1, end{align*} where $q_0mp 1in H^{4,4}(mathbb{R})$.Based on the spectral analysis of the Lax pair, we express the solution of the mKdV equation in terms of a Riemann-Hilbert problem. In our previous article, we have obtained long time asymptotics and soliton resolutions for the mKdV equation in the solitonic region $xiin(-6,-2)$ with $xi=frac{x}{t}$.In this paper, we calculate the asymptotic expansion of the solution $q(x,t)$ for the solitonic region $xiin(-varpi,-6)cup(-2,varpi)$ with $ 6 < varpi<infty$ being an arbitrary constant.For $-varpi<xi<-6$, there exist four stationary phase points on jump contour, and the asymptotic approximations can be characterized with an $N$-soliton on discrete spectrums and a leading order term $mathcal{O}(t^{-1/2})$ on continuous spectrum up to a residual error order $mathcal{O}(t^{-3/4})$. For $-2<xi<varpi$, the leading term of asymptotic expansion is described by the soliton solution and the error order $mathcal{O}(t^{-1})$ comes from a $bar{partial}$-problem. Additionally, asymptotic stability can be obtained.

تحميل البحث