We quantify model risk of a financial portfolio whereby a multi-period mean-standard-deviation criterion is used as a selection criterion. In this work, model risk is defined as the loss due to uncertainty of the underlying distribution of the returns of the assets in the portfolio. The uncertainty is measured by the Kullback-Leibler divergence, i.e., the relative entropy. In the worst case scenario, the optimal robust strategy can be obtained in a semi-analytical form as a solution of a system of nonlinear equations. Several numerical results are presented which allow us to compare the performance of this robust strategy with the optimal non-robust strategy. For illustration, we also quantify the model risk associated with an empirical dataset.