Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we have investigated entropic uncertainty relation (EUR) in a non-Hermitian system and revealed a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitarity dynamics determined by a Hermitian Hamiltonian, the behaviors of EUR can be well defined in two different ways depending on whether the system is located in unbroken phase or broken phase regimes. In unbroken phase regime, EUR undergoes an oscillatory behavior while in broken phase regime where the oscillation of EUR breaks down. The exceptional points mark the oscillatory and non-oscillatory behaviors of the EUR. In the dynamical limit, we have identified the witness of critical behavior of non-Hermitian systems in terms of the EUR. Our results reveal that the witness can detect exactly the critical points of non-Hermitian systems beyond (anti-) PT-symmetric systems. Our results may have potential applications to witness and detect phase transition in non-Hermitian systems.