Dynamic Transformation Between a Skyrmion String and a Bimeron String in a Layered Frustrated System


الملخص بالإنكليزية

Frustrated topological spin textures have unique properties that may enable novel spintronic applications, such as the helicity-based information storage. Here we report the statics and current-induced dynamics of two-dimensional (2D) pancake skyrmions in a stack of weakly coupled frustrated magnetic monolayers, which form a three-dimensional (3D) skyrmion string. The Bloch-type skyrmion string is energetically more stable than its Neel-type counterpart. It can be driven into translational motion by the dampinglike spin-orbit torque and shows the damping-dependent skyrmion Hall effect. Most notably, the skyrmion string can be transformed to a dynamically stable bimeron string by the dampinglike spin-orbit torque. The current-induced bimeron string rotates stably with respect to its center, which can spontaneously transform back to a skyrmion string when the current is switched off. Our results reveal unusual physical properties of 3D frustrated spin textures, and may open up new possibilities for spintronic applications based on skyrmion and bimeron strings.

تحميل البحث