Subcritical Connectivity and Some Exact Tail Exponents in High Dimensional Percolation


الملخص بالإنكليزية

In high dimensional percolation at parameter $p < p_c$, the one-arm probability $pi_p(n)$ is known to decay exponentially on scale $(p_c - p)^{-1/2}$. We show the same statement for the ratio $pi_p(n) / pi_{p_c}(n)$, establishing a form of a hypothesis of scaling theory. As part of our study, we provide sharp estimates (with matching upper and lower bounds) for several quantities of interest at the critical probability $p_c$. These include the tail behavior of volumes of, and chemical distances within, spanning clusters, along with the scaling of the two-point function at mesoscopic distance from the boundary of half-spaces. As a corollary, we obtain the tightness of the number of spanning clusters of a diameter $n$ box on scale $n^{d-6}$; this result complements a lower bound of Aizenman.

تحميل البحث