High-order cumulants and factorial cumulants of conserved charges are suggested to study the critical dynamics in heavy ion collisions. In this paper, using the parametric representation of the three-dimensional Ising model which is believed to belong to the same universality class with the Quantum chromo-dynamics, temperature dependence of the second- to fourth-order (factorial) cumulants of the order parameter is studied. It is found that the values of the normalized cumulants are independent of the external magnetic fields at the critical temperature, which results in a fixed point in the temperature dependence of the normalized cumulants. In finite-size systems simulated by Monte Carlo method, the fixed point behavior still exists at the temperature near the critical one. It is also found that the fixed point behavior is appeared in the temperature dependence of normalized factorial cumulants at least from the fourth-order one.