Improved performance of a near-field thermophotovoltaic system by a back gapped reflector


الملخص بالإنكليزية

Various spectral control techniques can be applied to improve the performance of a thermophotovoltaic (TPV) system. For example, a back surface reflector (BSR) can improve the performance of TPV systems. A conventional metal BSR structure enhances the photogeneration rate by increasing the absorption probability of photons via back surface reflection, affording a second chance for absorption. However, surface passivation and external luminescence effects introduced by BSR structures have been previously ignored, which potentially decreases the performance of TPV systems. Recently, a back gapped reflector (BGR) structure was proposed to greatly improve the performance of far-field TPV systems by reducing reflection loss at the semiconductor-metal interface. In the present work, the performance improvement on a thin-film, near-field InAs TPV system with a BGR is investigated, comparing its performance to that with a conventional metal BSR. Surface passivation conditions are also investigated to further improve the performance of TPV systems with back reflectors. The output power and efficiency are calculated using an iterative model combining fluctuational electrodynamics and the full drift-diffusion model. For the well-passivated condition, when the BSR is replaced by the BGR, the calculated conversion efficiency was improved from 16.4% to 21% and the output power was increased by 10% for the near-field regime. Finally, the reflection loss and external luminescence loss are analyzed to explain the performance improvement.

تحميل البحث