Singular metrics with negative scalar curvature


الملخص بالإنكليزية

Motivated by the work of Li and Mantoulidis, we study singular metrics which are uniformly Euclidean $(L^infty)$ on a compact manifold $M^n$ ($nge 3$) with negative Yamabe invariant $sigma(M)$. It is well-known that if $g$ is a smooth metric on $M$ with unit volume and with scalar curvature $R(g)ge sigma(M)$, then $g$ is Einstein. We show, in all dimensions, the same is true for metrics with edge singularities with cone angles $leq 2pi$ along codimension-2 submanifolds. We also show in three dimension, if the Yamabe invariant of connected sum of two copies of $M$ attains its minimum, then the same is true for $L^infty$ metrics with isolated point singularities.

تحميل البحث