Theoretical analysis of the leptonic decays $Bto ell ell ellbar u_{ell}$


الملخص بالإنكليزية

We discuss the general properties of the amplitude of the $Bto l^+l^-l u$ decays and calculate the related kinematical distributions $d^2Gamma/dq^2dq^2$, $q$ the momentum of the $l^+l^-$ pair emitted from the electromagnetic vertex and $q$ the momentum of the $l u$ pair emitted from the weak vertex. We emphasize that electromagnetic gauge invariance imposes essential constraints on the $Bto gamma^*l u$ amplitude at small $q^2$ which in the end yield the behaviour of the differential branching fraction as $dGamma(Bto l^+l^-l u)/dq^2propto 1/q^2$ and a mild logarithmic dependence of $Gamma(Bto l^{+}l^{-}l u)$ on the lepton mass $m_l$. Consequently, (i) the main contribution to the decay rate $Gamma(Bto mu^+mu^-e u_e )$ comes from the region of light vector resonances $rho^0$ and $omega$, $q^2simeq M_rho^2, M_omega^2$ and (ii) the decay rate $Gamma(Bto e^{+}e^{-}mu u_mu)$ receives comparable contributions from the region of small $q^2$ and from the resonance region. As the result, the decay rate $Gamma(Bto e^+e^-mu u_mu)$ is only a factor $sim 2$ larger than $Gamma(Bto mu^+mu^-e u_e)$. We perform a detailed analysis of the uncertainties in the theoretical predictions for the decays $Bto l^+l^-l u$ in the Standard Model. We found that the theoretical expectations for such decays in the Standard Model are only marginally compatible with the recent upper limits of the LHCb collaboration.

تحميل البحث