Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were proposed and analyzed in [8]. These specially designed methods use reduced precision or the implicit computations and full precision for the explicit computations. We develop a FORTRAN code to solve a nonlinear system of ordinary differential equations using the mixed precision additive Runge-Kutta (MP-ARK) methods on IBM POWER9 and Intel x86_64 chips. The convergence, accuracy, runtime, and energy consumption of these methods is explored. We show that these MP-ARK methods efficiently produce accurate solutions with significant reductions in runtime (and by extension energy consumption).