We present new H$alpha$ photometry for the Star-Formation Reference Survey (SFRS), a representative sample of star-forming galaxies in the local Universe. Combining these data with the panchromatic coverage of the SFRS, we provide calibrations of H$alpha$-based star-formation rates (SFRs) with and without correction for the contribution of [$rm N_{^{II}}$] emission. We consider the effect of extinction corrections based on the Balmer decrement, infrared excess (IRX), and spectral energy distribution (SED) fits. We compare the SFR estimates derived from SED fits, polycyclic aromatic hydrocarbons, hybrid indicators such as 24 $mu$m + H$alpha$, 8 $mu$m + H$alpha$, FIR + FUV, and H$alpha$ emission for a sample of purely star-forming galaxies. We provide a new calibration for 1.4 GHz-based SFRs by comparing to the H$alpha$ emission, and we measure a dependence of the radio-to-H$alpha$ emission ratio based on galaxy stellar mass. Active galactic nuclei introduce biases in the calibrations of different SFR indicators but have only a minimal effect on the inferred SFR densities from galaxy surveys. Finally, we quantify the correlation between galaxy metallicity and extinction.