$L^p$ properties of non-Archimedean fractional differentiation operators


الملخص بالإنكليزية

Let $D^alpha, alpha>0$, be the Vladimirov-Taibleson fractional differentiation operator acting on complex-valued functions on a non-Archimedean local field. The identity $D^alpha D^{-alpha}f=f$ was known only for the case where $f$ has a compact support. Following a result by Samko about the fractional Laplacian of real analysis, we extend the above identity in terms of $L^p$-convergence of truncated integrals. Differences between real and non-Archimedean cases are discussed.

تحميل البحث