We consider the problem of regularization by noise for the three dimensional magnetohydrodynamical (3D MHD) equations. It is shown that, in a suitable scaling limit, multiplicative noise of transport type gives rise to bounds on the vorticity fields of the fluid velocity and magnetic fields. As a result, if the noise intensity is big enough, then the stochastic 3D MHD equations admit a pathwise unique global solution for large initial data, with high probability.