Frequency Domain Convolutional Neural Network: Accelerated CNN for Large Diabetic Retinopathy Image Classification


الملخص بالإنكليزية

The conventional spatial convolution layers in the Convolutional Neural Networks (CNNs) are computationally expensive at the point where the training time could take days unless the number of layers, the number of training images or the size of the training images are reduced. The image size of 256x256 pixels is commonly used for most of the applications of CNN, but this image size is too small for applications like Diabetic Retinopathy (DR) classification where the image details are important for accurate classification. This research proposed Frequency Domain Convolution (FDC) and Frequency Domain Pooling (FDP) layers which were built with RFFT, kernel initialization strategy, convolution artifact removal and Channel Independent Convolution (CIC) to replace the conventional convolution and pooling layers. The FDC and FDP layers are used to build a Frequency Domain Convolutional Neural Network (FDCNN) to accelerate the training of large images for DR classification. The Full FDC layer is an extension of the FDC layer to allow direct use in conventional CNNs, it is also used to modify the VGG16 architecture. FDCNN is shown to be at least 54.21% faster and 70.74% more memory efficient compared to an equivalent CNN architecture. The modified VGG16 architecture with Full FDC layer is reported to achieve a shorter training time and a higher accuracy at 95.63% compared to the original VGG16 architecture for DR classification.

تحميل البحث