Automatic continuity for groups whose torsion subgroups are small


الملخص بالإنكليزية

We prove that a group homomorphism $varphicolon Lto G$ from a locally compact Hausdorff group $L$ into a discrete group $G$ either is continuous, or there exists a normal open subgroup $Nsubseteq L$ such that $varphi(N)$ is a torsion group provided that $G$ does not include $mathbb{Q}$ or the $p$-adic integers $mathbb{Z}_p$ or the Prufer $p$-group $mathbb{Z}(p^infty)$ for any prime $p$ as a subgroup, and if the torsion subgroups of $G$ are small in the sense that any torsion subgroup of $G$ is artinian. In particular, if $varphi$ is surjective and $G$ additionaly does not have non-trivial normal torsion subgroups, then $varphi$ is continuous. As an application we obtain results concerning the continuity of group homomorphisms from locally compact Hausdorff groups to many groups from geometric group theory, in particular to automorphism groups of right-angled Artin groups and to Helly groups.

تحميل البحث