In the first part of the paper we continue the study of solutions to Schrodinger equations with a time singularity in the dispersive relation and in the periodic setting. In the second we show that if the Schrodinger operator involves a Laplace operator with variable coefficients with a particular dependence on the space variables, then one can prove Strichartz estimates at the same regularity as that needed for constant coefficients. Our work presents a two dimensional analysis, but we expect that with the obvious adjustments similar results are available in higher dimensions.