Knowledge Gaps in the Cometary Spectra of Oxygen-Bearing Molecular Cations


الملخص بالإنكليزية

Molecular cations are present in various astronomical environments, most notably in cometary atmospheres and tails where sunlight produces exceptionally bright near-UV to visible transitions. Such cations typically have longer-wavelength and brighter electronic emission than their corresponding neutrals. A robust understanding of their near-UV to visible properties would allow these cations to be used as tools for probing the local plasma environments or as tracers of neutral gas in cometary environments. However, full spectral models are not possible for characterization of small, oxygen containing molecular cations given the body of molecular data currently available. The five simplest such species (H2O+, CO+2 , CO+, OH+, and O+2 ) are well characterized in some spectral regions but are lacking robust reference data in others. Such knowledge gaps hinder fully quantitative models of cometary spectra, specifically, hindering accurate estimates of physical-chemical processes originating with the most common molecules in comets. Herein the existing spectral data are collected for these molecules and highlight the places where future work is needed, specifically where the lack of such data would greatly enhance the understanding of cometary evolution.

تحميل البحث