Analytical and numerical study of the hidden boundary of practical stability: complex versus real Lorenz systems


الملخص بالإنكليزية

This work presents the continuation of the recent article The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension, published in the Nonlinear Dynamics journal. In this work, in comparison with the results for classical real-valued Lorenz system (henceforward -- Lorenz system), the problem of analytical and numerical identification of the boundary of global stability for the complex-valued Lorenz system (henceforward -- complex Lorenz system) is studied. As in the case of the Lorenz system, to estimate the inner boundary of global stability the possibility of using the mathematical apparatus of Lyapunov functions (namely, the Barbashin-Krasovskii and LaSalle theorems) is demonstrated. For additional analysis of homoclinic bifurcations in complex Lorenz system a special analytical approach by Vladimirov is utilized. To outline the outer boundary of global stability and identify the so-called hidden boundary of global stability, possible birth of hidden attractors and transient chaotic sets is analyzed.

تحميل البحث