Abrupt orthorhombic relaxation in compressively strained ultra-thin SrRuO3 films


الملخص بالإنكليزية

Lattice structure can dictate electronic and magnetic properties of a material. Especially, reconstruction at a surface or heterointerface can create properties that are fundamentally different from those of the corresponding bulk material. We have investigated the lattice structure on the surface and in the thin films of epitaxial SrRuO3 with the film thickness up to 22 pseudo-cubic unit cells (u.c.), using the combination of surface sensitive low energy electron diffraction and bulk sensitive scanning transmission electron microscopy. Our analysis indicates that, in contrast to many perovskite oxides, the RuO6 tilt and rotational distortions appear even in single unit cell SrRuO3 thin films on cubic SrTiO3, while the full relaxation to the bulk-like orthorhombic structure takes 3-4 u.c. from the interface for thicker films. Yet the TiO6 octahedra of the substrate near the interface with SrRuO3 films show no sign of distortion, unlike those near the interface with CaRuO3 films. Two orthogonal in-plane rotated structural domains are identified. These structural distortions are essential for the nature of the thickness dependent transport and magnetism in ultrathin films.

تحميل البحث