Engineered dissipation induced entanglement transition in quantum spin chains: from logarithmic growth to area law


الملخص بالإنكليزية

Recent theoretical work has shown that the competition between coherent unitary dynamics and stochastic measurements, performed by the environment, along wavefunction trajectories can give rise to transitions in the entanglement scaling. In this work, complementary to these previous studies, we analyze a situation where the role of Hamiltonian and dissipative dynamics is reversed. We consider an engineered dissipation, which stabilizes an entangled phase of a quantum spin$-1/2$ chain, while competing single-particle or interacting Hamiltonian dynamics induce a disentangled phase. Focusing on the single-particle unitary dynamics, we find that the system undergoes an entanglement transition from a logarithmic growth to an area law when the competition ratio between the unitary evolution and the non-unitary dynamics increases. We evidence that the transition manifests itself in state-dependent observables at a finite competition ratio for Hamiltonian and measurement dynamics. On the other hand, it is absent in trajectory-averaged steady-state dynamics, governed by a Lindblad master equation: although purely dissipative dynamics stabilizes an entangled state, for any non-vanishing Hamiltonian contribution the system ends up irremediably in a disordered phase. In addition, a single trajectory analysis reveals that the distribution of the entanglement entropy constitutes an efficient indicator of the transition. Complementarily, we explore the competition of the dissipation with coherent dynamics generated by an interacting Hamiltonian, and demonstrate that the entanglement transition also occurs in this second model. Our results suggest that this type of transition takes place for a broader class of Hamiltonians, underlining its robustness in monitored open quantum many-body systems.

تحميل البحث