We discuss the role of quantum coherence in the energy fluctuations of open quantum systems. To this aim, we introduce a protocol, to which we refer to as the end-point-measurement scheme, allowing to define the statistics of energy changes as a function of energy measurements performed only after the evolution of the initial state. At the price of an additional uncertainty on the initial energies, this approach prevents the loss of initial quantum coherences and enables the estimation of their effects on energy fluctuations. We demonstrate our findings by running an experiment on the IBM Quantum Experience superconducting qubit platform.