The crystal structure and magnetic property of the single crystalline hexagonal rare-earth indium oxides GdInO$_3$ have been studied by combing experiments and model calculations. The two inequivalent Gd$^{3+}$ ions form the centered honeycomb lattice, which consists of honeycomb and triangular sublattices. The dc magnetic susceptibility and specific heat measurements suggest two antiferromagnetic phase transitions at $T_textrm{N1}$ = 2.3 K and $T_textrm{N2}$ = 1.02 K. An inflection point is observed in the isothermal magnetization curve, which implies an up-up-down phase with a 1/3 magnetization plateau. We also observe a large magnetic entropy change originated from the magnetic frustration in GdInO$_3$. By considering a classical spin Hamiltonian, we establish the ground state phase diagram, which suggests that GdInO$_3$ has a weak easy-axis anisotropy and is close to the equilateral triangular-lattice system. The theoretical ground-state phase diagram may be used as a reference in NMR, ESR, or $mu$SR experiments in future.