Ultimate In-plane Magnetoresistance Ratio of Graphene by Controlling the Gapped Dirac Cone through Pseudospin


الملخص بالإنكليزية

$require{mediawiki-texvc}$ A theoretical study is presented on the in-plane conductance of graphene that is partially sandwiched by Ni(111) slabs with a finite size and atom-scale width of $approx12.08 AA$. In the sandwiched part, the gapped Dirac cone of graphene can be controlled via pseudospin by changing the magnetic alignment of the Ni(111) slabs. When the magnetic moments of the upper and lower Ni(111) slabs have antiparallel and parallel configurations, the bandgap at the Dirac cone is open and closed, respectively. The transmission probability calculation for the in-plane conductance of the system indicated that the antiparallel configuration would result in nearly zero conductance of $E-E_F=0.2$ eV. In the parallel configuration, the transmission probability calculation indicated that the system would have a profile similar to that of pristine graphene. A comparison of the transmission probabilities of the antiparallel and parallel configurations indicated that a high magnetoresistance of $1450%$ could be achieved. An ultimate magnetoresistance can be expected if the Ni(111) slab widths are increased to the nanometer scale.

تحميل البحث