Effect of Zr and Al Addition on Nanocluster Formation in Oxide Dispersion Strenghthened Steel-an ab initio Study


الملخص بالإنكليزية

Conventional Oxide dispersion strengthened steels are characterized by thermally stable, high density of Y-Ti-O nanoclusters, which are responsible for their high creep strength. Ti plays a major role in obtaining a high density of ultrafine particles of optimum size range of 2-10 nm. In Al-containing ODS steels developed for corrosion resistance, Y-Al-O clusters formed are of size range 20 -100 nm, and Ti fails in making dispersions finer in the presence of Al. Usage of similar alloying elements like Zr in place of Ti is widely considered. In this study, binding energies of different stages of Y-Zr-O-Vacancy and Y-Al-O-Vacancy complexes in the bcc Iron matrix are studied by first-principle calculations. It is shown that in all the stages of formation, Y-Zr-O-Vacancy clusters have higher binding energy than Y-Al-O-Vacancy clusters and hence in ferritic steel containing both Zr and Al, Y-Zr-O-Vacancy clusters are more stable and more favored to nucleate than Y-Al-O-Vacancy clusters. The bonding nature in each stage is analyzed using charge density difference plots for the plausible reason for higher stability of Y-Zr-O-Vacancy clusters.

تحميل البحث