Atomic motion of a photo-induced coherent phonon of bismuth (Bi) is directly observed with time-resolved x-ray diffraction under a cryogenic temperature. It is found that displacive excitation in a fully symmetric A$_{mathrm{1g}}$ phonon mode is suppressed at a temperature $T = 9$ K. This result implies a switching of the phonon-generation mechanism from displacive to impulsive excitation with decreasing the temperature. It is comprehensibly understandable in a framework of stimulated Raman scattering. The suppression of displacive excitation also indicates that the adiabatic potential surface deviates from a parabolic one, which is assumed to be realized at room temperature. This study points out important aspects of phonon generation in transient phonon-induced quantum phenomena.