On the structure of computable reducibility on equivalence relations of natural numbers


الملخص بالإنكليزية

We examine the degree structure $mathbf{ER}$ of equivalence relations on $omega$ under computable reducibility. We examine when pairs of degrees have a join. In particular, we show that sufficiently incomparable pairs of degrees do not have a join but that some incomparable degrees do, and we characterize the degrees which have a join with every finite equivalence relation. We show that the natural classes of finite, light, and dark degrees are definable in $mathbf{ER}$. We show that every equivalence relation has continuum many self-full strong minimal covers, and that $mathbf{d}oplus mathbf{Id_1}$ neednt be a strong minimal cover of a self-full degree $mathbf{d}$. Finally, we show that the theory of the degree structure $mathbf{ER}$ as well as the theories of the substructures of light degrees and of dark degrees are each computably isomorphic with second order arithmetic.

تحميل البحث