Reversible optical-microwave quantum conversion assisted by optomechanical dynamically-dark modes


الملخص بالإنكليزية

We propose a dynamically-dark-mode (DDM) scheme to realize the reversible quantum conversion between microwave and optical photons in an electro-optomechanical (EOM) model. It is shown that two DDMs appear at certain times during the dynamical evolution of the EOM model. It is demonstrated that the DDMs can induce two kinds of reversible and highly efficient quantum conversion between the microwave and optical fields, the conditional quantum conversion (CQC) and the entanglement-assisted quantum conversion (EAQC). The CQC happens at the condition of vanishing of the initial-state mean value of one of the microwave and optical fields, and only depends on the coupling ratio of the system under consideration. The EAQC occurs in the presence of the initial-state entanglement between the microwave and optical fields. It is found that the EAQC can be manipulated by engineering the initial-state entanglement and the coupling ratio. It is indicated that it is possible to realize the entanglement-enhanced (or suppressed) quantum conversion through controlling the phase of the initial-state parameter. Our work highlights the power of generating reversible and highly efficient quantum conversion between microwave and optical photons by the DDMs.

تحميل البحث