Universality of Poisson limits for moduli of roots of Kac polynomials


الملخص بالإنكليزية

We give a new proof of a recent resolution by Michelen and Sahasrabudhe of a conjecture of Shepp and Vanderbei that the moduli of roots of Gaussian Kac polynomials of degree $n$, centered at $1$ and rescaled by $n^2$, should form a Poisson point process. We use this new approach to verify a conjecture of Michelen and Sahasrabudhe that the Poisson statistics are in fact universal.

تحميل البحث