Majorana zero modes, unconventional real-complex transition and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice


الملخص بالإنكليزية

In this paper, a one-dimensional non-Hermitian quasiperiodic $p$-wave superconductor without $mathcal{PT}$-symmetry is studied. By analyzing the spectrum, we discovered there still exists real-complex energy transition even if the inexistence of $mathcal{PT}$-symmetry breaking. By the inverse participation ratio, we constructed such a correspondence that pure real energies correspond to the extended states and complex energies correspond to the localized states, and this correspondence is precise and effective to detect the mobility edges. After investigating the topological properties, we arrive at a fact that the Majorana zero modes in this system are immune to the non-Hermiticity.

تحميل البحث