Usually, in mechanics, we obtain the trajectory of a particle in a given force field by solving Newtons second law with chosen initial conditions. In contrast, through our work here, we first demonstrate how one may analyse the behaviour of a suitably defined family of trajectories of a given mechanical system. Such an approach leads us to develop a mechanics analog following the well-known Raychaudhuri equation largely studied in Riemannian geometry and general relativity. The idea of geodesic focusing, which is more familiar to a relativist, appears to be analogous to the meeting of trajectories of a mechanical system within a finite time. Applying our general results to the case of simple pendula, we obtain relevant quantitative consequences. Thereafter, we set up and perform a straightforward experiment based on a system with two pendula. The experimental results on this system are found to tally well with our proposed theoretical model. In summary, the simple theory, as well as the related experiment, provides us with a way to understand the essence of a fairly involved concept in advanced physics from an elementary standpoint.