Atacama Cosmology Telescope measurements of a large sample of candidates from the Massive and Distant Clusters of WISE Survey: Sunyaev-Zeldovich effect confirmation of MaDCoWS candidates using ACT


الملخص بالإنكليزية

Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2,839 significant galaxy overdensities at redshifts $0.7lesssim zlesssim 1.5$, which included extensive follow-up imaging from the Spitzer Space Telescope to determine cluster richnesses. Concurrently, the Atacama Cosmology Telescope (ACT) has produced large area mm-wave maps in three frequency bands along with a large catalog of Sunyaev-Zeldovich (SZ) selected clusters, as part of its Data Release 5 (DR5). Using the maps and cluster catalog from DR5, we explore the scaling between SZ mass and cluster richness. We use complementary radio survey data from the Very Large Array, submillimeter data from Herschel, and ACT 224~GHz data to assess the impact of contaminating sources on the SZ signals. We then use a hierarchical Bayesian model to fit the mass-richness scaling relation. We find that MaDCoWS clusters have submillimeter contamination which is consistent with a gray-body spectrum, while the ACT clusters are consistent with no submillimeter emission on average. We find the best fit ACT SZ mass vs. MaDCoWS richness scaling relation has a slope of $kappa = 1.84^{+0.15}_{-0.14}$, where the slope is defined as $Mpropto lambda_{15}^{kappa}$ where $lambda_{15}$ is the richness. Additionally, we find that the approximate level of in-fill of the ACT and MaDCoWS cluster SZ signals to be at the percent level

تحميل البحث