Massive scalar fields provide excellent dark matter candidates, whose dynamics are often explored analytically and numerically using nonrelativistic Schr{o}dinger-Poisson (SP) equations in a cosmological context. In this paper, starting from the nonlinear and fully relativistic Klein-Gordon-Einstein (KGE) equations in an expanding universe, we provide a systematic framework for deriving the SP equations, as well as relativistic corrections to them, by integrating out `fast modes and including nonlinear metric and matter contributions. We provide explicit equations for the leading-order relativistic corrections, which provide insight into deviations from the SP equations as the system approaches the relativistic regime. Upon including the leading-order corrections, our equations are applicable beyond the domain of validity of the SP system, and are simpler to use than the full KGE case in some contexts. As a concrete application, we calculate the mass-radius relationship of solitons in scalar dark matter and accurately capture the deviations of this relationship from the SP system towards the KGE one.