A large modulation of electron-phonon coupling and an emergent superconducting dome in doped strong ferroelectrics


الملخص بالإنكليزية

We use first-principles methods to study doped strong ferroelectrics (taking BaTiO$_3$ as a prototype). Here we find a strong coupling between itinerant electrons and soft polar phonons in doped BaTiO$_3$, contrary to Anderson/Blounts weakly coupled electron mechanism for ferroelectric-like metals. As a consequence, across a polar-to-centrosymmetric phase transition in doped BaTiO$_3$, the total electron-phonon coupling is increased to about 0.6 around the critical concentration, which is sufficient to induce phonon-mediated superconductivity of about 2 K. Lowering the crystal symmetry of doped BaTiO$_3$ by imposing epitaxial strain can further increase the superconducting temperature via a sizable coupling between itinerant electrons and acoustic phonons. Our work demonstrates a viable approach to modulating electron-phonon coupling and inducing phonon-mediated superconductivity in doped strong ferroelectrics and potentially in polar metals. Our results also show that the weakly coupled electron mechanism for ferroelectric-like metals is not necessarily present in doped strong ferroelectrics.

تحميل البحث