Interpolation polynomials, bar monomials, and their positivity


الملخص بالإنكليزية

We prove a positivity result for interpolation polynomials that was conjectured by Knop and Sahi. These polynomials were first introduced by Sahi in the context of the Capelli eigenvalue problem for Jordan algebras, and were later shown to be related to Jack polynomials by Knop-Sahi and Okounkov-Olshanski. The positivity result proved here is an inhomogeneous generalization of Macdonalds positivity conjecture for Jack polynomials. We also formulate and prove the non-symmetric version of the Knop-Sahi conjecture, and in fact we deduce everything from an even stronger positivity result. This last result concerns certain inhomogeneous analogues of ordinary monomials that we call bar monomials. Their positivity involves in an essential way a new partial order on compositions that we call the bar order, and a new operation that we call a glissade.

تحميل البحث