We give an algorithm to find a mincut in an $n$-vertex, $m$-edge weighted directed graph using $tilde O(sqrt{n})$ calls to any maxflow subroutine. Using state of the art maxflow algorithms, this yields a directed mincut algorithm that runs in $tilde O(msqrt{n} + n^2)$ time. This improves on the 30 year old bound of $tilde O(mn)$ obtained by Hao and Orlin for this problem.