Boosting quantum battery performance by structure engineering


الملخص بالإنكليزية

Quantum coherences, correlations and collective effects can be harnessed to the advantage of quantum batteries. Here, we introduce a feasible structure engineering scheme that is applicable to spin-based open quantum batteries. Our scheme, which builds solely upon a modulation of spin energy gaps, allows engineered quantum batteries to exploit spin-spin correlations for mitigating environment-induced aging. As a result of this advantage, an engineered quantum battery can preserve relatively more energy as compared with its non-engineered counterpart over the course of the storage phase. Particularly, the excess in stored energy is independent of system size. This implies a scale-invariant passive protection strategy, which we demonstrate on an engineered quantum battery with staggered spin energy gaps. Our findings establish structure engineering as a useful route for advancing quantum batteries, and bring new perspectives on efficient quantum battery designs.

تحميل البحث