We reveal that phononic thermal transport in graphene is not immune to grain boundaries (GBs) aligned along the direction of the temperature gradient. Non-equilibrium molecular dynamics simulations uncover a large reduction in the phononic thermal conductivity ($kappa_p$) along linear ultra-narrow GBs comprising periodically-repeating pentagon-heptagon dislocations. Greens function calculations and spectral energy density analysis indicate that $kappa_p$ is the complex manifestation of the periodic strain field, which behaves as a reflective diffraction grating with both diffuse and specular phonon reflections, and represents a source of anharmonic phonon-phonon scattering. Our findings provide new insights into the integrity of the phononic thermal transport in GB graphene.