A first principles approach to the theoretical description of the development of biological forms, from a fertilized egg to a functioning embryo, remains a central challenge to applied physics and theoretical biology. Rather than refer to principles of self-organization and non-equilibrium statistical mechanics to describe a developing embryo from its active cellular constituents, a purely geometric theory is constructed that references the properties of the ambient space that the embryo occupies. In 1975 the Fields laureate Ren{e} Thom developed a system of techniques and local dynamical models that are capable of reconstructing the local dynamic of an embryo at each new growth event of the system. Each new growth event (the development of a limb, for example) is a topological change in the dynamic of the system that can be classified only according to the properties of space. The local models can be non-conservative flows with robust attractor behavior that serve as organizing centers for systems development. Hamiltonian flows can also be considered with novel, self-reproducing vague attractor behavior. The set of growth events become an unfolding space related to the differentiable manifold of states. The set of growth events, which Thom refers to as the catastrophe set, has special algebraic properties which permit these models to be low dimensional--the local model contains few parameters. We present Thoms work as a research program outlining a framework for the construction of these local models, and, ultimately, the synthesis of these models into a full theoretical description of a developing biological organism. We give examples of the application of selected models to key growth events in the process of gastrulation.