Machine Learning Universal Bosonic Functionals


الملخص بالإنكليزية

The one-body reduced density matrix $gamma$ plays a fundamental role in describing and predicting quantum features of bosonic systems, such as Bose-Einstein condensation. The recently proposed reduced density matrix functional theory for bosonic ground states establishes the existence of a universal functional $mathcal{F}[gamma]$ that recovers quantum correlations exactly. Based on a novel decomposition of $gamma$, we have developed a method to design reliable approximations for such universal functionals: our results suggest that for translational invariant systems the constrained search approach of functional theories can be transformed into an unconstrained problem through a parametrization of an Euclidian space. This simplification of the search approach allows us to use standard machine-learning methods to perform a quite efficient computation of both $mathcal{F}[gamma]$ and its functional derivative. For the Bose-Hubbard model, we present a comparison between our approach and Quantum Monte Carlo.

تحميل البحث