We report on the experimental investigation of the fluctuation properties in the resonance frequency spectra of a flat resonator simulating a dissipative quantum billiard subject to partial time-reversal invariance violation (TIV) which is induced by two magnetized ferrites. The cavity has the shape of a quarter bowtie billiard of which the corresponding classical dynamics is chaotic. Due to dissipation it is impossible to identify a complete list of resonance frequencies. Based on a random-matrix theory approach we derive analytical expressions for statistical measures of short- and long-range correlations in such incomplete spectra interpolating between the cases of preserved time-reversal invariance and complete TIV and demonstrate their applicability to the experimental spectra.