We prove sharp $L^infty$ decay and modified scattering for a one-dimensional dispersion-managed cubic nonlinear Schrodinger equation with small initial data chosen from a weighted Sobolev space. Specifically, we work with an averaged version of the dispersion-managed NLS in the strong dispersion management regime. The proof adapts techniques from Hayashi-Naumkin and Kato-Pusateri, which established small-data modified scattering for the standard $1d$ cubic NLS.