HST PanCET program: Non-detection of atmospheric escape in the warm Saturn-sized planet WASP-29 b


الملخص بالإنكليزية

(Abridged) Short-period gas giant exoplanets are susceptible to intense atmospheric escape due to their large scale heights and strong high-energy irradiation. This process is thought to occur ubiquitously, but to date we have only detected direct evidence of atmospheric escape in hot Jupiters and warm Neptunes. The paucity of cases for intermediate, Saturn-sized exoplanets at varying levels of irradiation precludes a detailed understanding of the underlying physics in atmospheric escape of hot gas giants. Our objectives here are to assess the high-energy environment of the warm ($T_mathrm{eq} = 970$ K) Saturn WASP-29 b and search for signatures of atmospheric escape. We used far-ultraviolet (FUV) observations from the Hubble Space Telescope to analyze the flux time series of H I, C II, Si III, Si IV, and N V during the transit of WASP-29 b. At 3$sigma$ confidence, we rule out any in-transit absorption of H Ilarger than 92% in the Lyman-$alpha$ blue wing and 19% in the red wing. We found an in-transit flux decrease of $39%^{+12%}_{-11%}$ in the ground-state C II emission line at 133.45 nm. But due to this signal being significantly present in only one visit, it is difficult to attribute a planetary or stellar origin for the ground-state C II signal. We place 3$sigma$ absorption upper limits of 40%, 49% and 24% for Si III, Si IV, and for excited-state C II at 133.57 nm, respectively. Low activity levels and the faint X-ray luminosity suggest that WASP-29 is an old, inactive star. An energy-limited approximation combined with the reconstructed EUV spectrum of the host suggests that the planet is losing its atmosphere at a rate of $4 times 10^9$ g s$^{-1}$. The non-detection at Lyman-$alpha$ could be partly explained by a low fraction of escaping neutral hydrogen, or by the state of fast radiative blow-out we infer from the reconstructed stellar Lyman-$alpha$ line.

تحميل البحث