We report the detection of an Al II line at 2669.155 Angstroms in 11 metal-poor stars, using ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. We derive Al abundances from this line using a standard abundance analysis, assuming local thermodynamic equilibrium (LTE). The mean [Al/Fe] ratio is -0.06 +/- 0.04 (sigma = 0.22) for these 11 stars spanning -3.9 < [Fe/H] < -1.3, or [Al/Fe] = -0.10 +/- 0.04 (sigma = 0.18) for 9 stars spanning -3.0 < [Fe/H] < -1.3 if two carbon-enhanced stars are excluded. We use these abundances to perform an empirical test of non-LTE (NLTE) abundance corrections predicted for resonance lines of Al I, including the commonly-used optical Al I line at 3961 Angstroms. The Al II line is formed in LTE, and the abundance derived from this line matches that derived from high-excitation Al I lines predicted to have minimal NLTE corrections. The differences between the abundance derived from the Al II line and the LTE abundance derived from Al I resonance lines are +0.4 to +0.9 dex, which match the predicted NLTE corrections for the Al I resonance lines. We conclude that the NLTE abundance calculations are approximately correct and should be applied to LTE abundances derived from Al I lines.