XCloud-VIP: Virtual Peak Enables Highly Accelerated NMR Spectroscopy and Faithful Quantitative Measures


الملخص بالإنكليزية

Background: Nuclear Magnetic Resonance (NMR) spectroscopy is an important bio-engineering tool to determine the metabolic concentrations, molecule structures and so on. The data acquisition time, however, is very long in multi-dimensional NMR. To accelerate data acquisition, non-uniformly sampling is an effective way but may encounter severe spectral distortions and unfaithful quantitative measures when the acceleration factor is high. Objective: To reconstruct high fidelity spectra from highly accelerated NMR and achieve much better quantitative measures. Methods: A virtual peak (VIP) approach is proposed to self-learn the prior spectral information, such as the central frequency and peak lineshape, and then feed these information into the reconstruction. The proposed method is further implemented with cloud computing to facilitate online, open, and easy access. Results: Results on synthetic and experimental data demonstrate that, compared with the state-of-the-art method, the new approach provides much better reconstruction of low-intensity peaks and significantly improves the quantitative measures, including the regression of peak intensity, the distances between nuclear pairs, and concentrations of metabolics in mixtures. Conclusion: Self-learning prior peak information can improve the reconstruction and quantitative measures of spectra. Significance: This approach enables highly accelerated NMR and may promote time-consuming applications such as quantitative and time-resolved NMR experiments.

تحميل البحث