Quantum interferometry for rotation sensing in an optical microresonator


الملخص بالإنكليزية

We theoretically propose a scheme to perform rotation sensing in a Whispering-gallery-mode resonator setup. With the assistance of a large detuned two-level atom, which induces the effective coupling between clockwise and counterclockwise propagating modes in the resonator, we realize an effective interferometry with SU(2) algebraic structure. By studying the quantum Fisher information of the system, we find that the estimate accuracy for the angular velocity of the rotation can achieve and even break the Heisenberg limit in linear and nonlinear setup, respectively. The high performance of quantum metrology is proved to be associated with the state compressibility during the time evolution. We hope that our investigation will be useful in the design of a quantum gyroscope based on spinning resonators.

تحميل البحث